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Photo-induced spin auto-oscillations and autowaves in
magnets

S N Lyakhimets†, B A Ivanov and A A Zhmudsky
NASU Institute of Magnetism, 36 (b) Vernadskii av, 252142, Kiev, Ukraine

Received 25 September 1996

Abstract. The theory of light-induced formation of spin autowaves in weak ferromagnets, such
as FeBO3, caused by special non-equilibrium photo-induced magnetic anisotropy is constructed.
The description is based on the coupled set of phenomenological equations for the iron sublattice
magnetizations and for the parameters describing the induced anisotropy. The theoretical results
are in good agreement with the experimental data. Some bifurcations of the solution appear
with the changing of the parameters of the magnet.

1. Introduction

The investigation of self-sustaining space homogeneous and inhomogeneous oscillation
(auto-oscillations and autowaves) is of great importance in non-equilibrium physics of
condensed matter. Such effects were found in low-temperature physics of magnetic materials
by Fedorov and his collaborators [1]. In these and further [2, 3] investigations, the dynamic
state, caused by the unpolarized non-coherent optical radiation, in a thin plate of iron borate
(FeBO3) with nickel impurities (FeBO3:Ni) was observed. The state appears to be a periodic
structure (with a period of3 ∼ 100 mm) of magnetization inhomogeneity spreading in a
crystal with velocityV of the order of 10µm s−1. It may be interpreted as a low-frequency
magnetization autowave; its frequency (ω = 2πV/3 ∼ (10–102) s−1) is several orders less
than the velocity and the amplitude (6 10◦) considerably exceeds the usual nonlinear spin
waves (for example, excited by the parallel pumping, see [4]) characteristics. The authors of
[1] connected the appearance of these autowaves with unusual properties of photo-induced
uniaxial magnetic anisotropy (PUMA) in FeBO3:Ni.

Induced anisotropy is known to take place in some magnets, with the anisotropy axis
direction depending on the magnetization direction in previous time moments [5]. Note that
induced anisotropy can be observed in the absence of radiation (without external excitation),
i.e. at the equilibrium state. At equilibrium and in some non-equilibrium cases, for example
PUMA in FeBO3 with copper and manganese impurities, the easy axis of the induced
anisotropy is parallel to the magnetization. The induced anisotropy in this case stabilizes
the instantaneous direction of magnetization which is well known for a number of magnetic
materials [5].

However, for FeBO3:Ni (also for FeBO3:Cr and for pure iron borate) the situation is
different: the easy axis of PUMA is perpendicular to the magnetization direction. This fact
was shown in the experiments on domain-wall, shifting susceptibility [6] and the acoustic
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resonance measurements [7]. Hence PUMA in FeBO3:Ni destabilizes any magnetization
distribution that generally may cause some auto-oscillations [1].

In [8] the equation that describes the magnetization dynamics, with PUMA being
taken into account, was proposed and a small-amplitude autowave theory was proposed
for materials such as FeBO3:Ni. Similar equations were obtained later in [9] on the basis
of microscopic consideration of FeBO3 magnetization dynamics, taking into account the
interaction with the degenerate magnetic impurity subsystem.

In [8] only weakly-nonlinear autowaves with small amplitudeA, A � 1, were
considered. We will show that, with reasonable assumptions about the relationship between
the parameters describing PUMA and crystalline in-plane magnetic anisotropy, strongly
nonlinear auto-oscillation regimes may take place in FeBO3:Ni. The change of the system
parameters causes a complicated set of bifurcation changes in a limit cycle that describes
the auto-oscillations.

2. The model and the stability of the magnetic homogeneous state

The magnetization dynamics for a two-sublattice weak ferromagnet such as FeBO3 can
be described by theσ -model equation for a unit vector of antiferromagnetisml. The
magnetizationM is determined byl and its time derivative (see for details the review
articles [10]). The FeBO3 in-plane anisotropy is considerably smaller than the uniaxial one
and we may take into account only the in-plane dynamics of the vectorl (in the easy plane
xy only). In this case,l orientation is determined by one angleϕ only. The following
dynamic equation forϕ can be written:

α

(
1

c2

∂2ϕ

∂t2
−∇2ϕ

)
+ F(ϕ)+ λ∂ϕ

∂t
= 0. (1)

Here α is the inhomogeneous exchange constant,c is the spin wave velocity,λ is the
relaxation constant andF(ϕ) determines the magnetic anisotropy. For a rhombohedral
magnet such as FeBO3, the magnetizationm can be expressed in the form

m = m0⊥(ex cosϕ + ey sinϕ)+ [m0z sin 3ϕ + (2/g)(∂ϕ/∂t)]ez
wherem0⊥ andm0z are determined by two independent invariants of the Dzyaloshinskii
interaction,m0z � m0⊥, andg is the giromagnetic ratio, see [10]. The dynamic contribution
to the magnetization for low-frequency autowaves(m)dyn ∝ ∂ϕ/∂t is small and may be
omitted.

For the usual crystalline anisotropyF(ϕ) = ∂wa(ϕ)/∂ϕ, wherewa(ϕ) is the anisotropy
energy, i.e.F = βn sinnϕ (n = 2,4,6 for rhombic, tetragonal, rhombohedral and hexagonal
magnets, respectively). The account of the magnetic fieldH in the basal plane leads to
F(ϕ) = h sinϕ, whereh = Hm0⊥/M2

0 andM0 is the sublattice magnetization.
PUMA in FeBO3 is determined by the orientation of the twofold anisotropy axis in

the crystal basal plane. The corresponding contribution ofFpi to F(ϕ) is characterized by
parametersK1 andK2 and may be written as

Fpi = −2(K1 cos 2ϕ −K2 sin 2ϕ).

The values ofK1 andK2 at the momentt depend on the shape of theϕ(t ′) function
at t ′ < t . According to the commonly used theory of induced anisotropy [5], its time
dependence is determined by the dissipation equation,

τ
dK1

dt
=
(

1

2
f sin 2ϕ −K1

)
τ

dK2

dt
=
(

1

2
f cos 2ϕ −K2

)
(2)
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wheref is the constant characterizing the PUMA intensity andτ is the PUMA relaxation
time. Further we shall be convinced that the case of FeBO3:Ni corresponds tof > 0, i.e.
with destabilization of a static distribution. The equation (1) forϕ, along with (2); describes
a self-consistent dynamics of the magnetic spin subsystem and PUMA-determining impurity
subsystem. Let us introduce the angleψ describing the PUMA axis direction according to
the formula

K1 = κ sin 2ψ K2 = κ cos 2ψ.

Thus we shall write down the full set of equations as

α

c2

∂2ϕ

∂t2
− α∇2ϕ + λ∂ϕ

∂t
+ βn sinnϕ = 2κ sin8 8 = 2(ϕ −9)

τ
dκ

dt
+ κ = 1

2
f cos8 τκ

dψ

dt
= 1

4
f sin8. (3)

Note that the formal solution can be written for the two last equations in (3) and this
system can be represented as an integrodifferential equation forϕ(t, r):

α

c2

∂2ϕ

∂t2
− α∇2ϕ + λ∂ϕ

∂t
+ ∂wa
∂ϕ
= fL{ϕ(t)}

L{ϕ(t)} = f
∫
(dt ′/τ) exp[(t ′ − t)/τ ] sin(2[ϕ(t)− ϕ(t ′)]). (4)

Let us estimate the magnetic parameters entering the equations (3) and (4). The
magnitude of the essential crystal anisotropy is determined by the anisotropy fieldH6 =
3β6M0 ≈ 0.26 Oe. The uniaxial compression in a basal plane is often used to create a
stripe-domain structure in FeBO3 inducing a rhombic anisotropy with a constantβ2. This
anisotropy fieldH2 may reach some Oe [10].

The PUMA constant magnitude is defined by the fieldHf = fM0. According to [6, 7],
pure FeBO3 has a value ofHf 6 0.1 Oe, and for FeBO3:Ni it reaches 1.5 Oe [12] which is
greater thanH6. The constantτ is equal to 103 s atT = 100 K and the radiation intensity
I is about 0.1 W cm−2. The value ofτ is inversely proportional toI , τ ∼ 1/I [12] for a
wide range ofI . The value of the relaxation constantλ for a slow magnetization dynamics
is unknown, so let us assume that the dimensionless constantgM0λ ∼ 1 according to the
observed autowave parameters [1–3].

The simplest analysis of equations (3) or (4) can be performed for rather slow-changing
magnetization whenτ(dϕ/dt) � 1. As we shall be convinced further this condition is
not realized in the experimentally observed autowave. However, the investigation of the
ϕ(t) dynamics in this limit is useful for a more transparent representation of the unusual
properties of the system. To first order inτ(dϕ/dt) the integral operator on the right-
hand side of equation (4) is transformed into a differential one,L{ϕ(t)} → τ(dϕ/dt).
It is clear that in this case PUMA leads to a renormalization of the relaxation constant
λ → λeff = λ − 2f τ . Thus, if f > 0, the effective relaxation constant for rather slow
oscillations becomes negative at 2f τ/λ > 1. Even atgM0λ ∼ 1, this inequality for FeBO3
(also for FeBO3:Ni) is fulfilled with a great reserve (see above).

With increasing of the frequencyω, the simple substitution ofL{ϕ(t)} → (dϕ/dt)
becomes inadequate, i.e.λeff = λeff (ω). To investigate the stability of a homogeneous state
we shall linearize (3) according toϕ. The solution has the formϕ = ϕ0 exp(iωt−ikr⊥−0t),
where the parameters0, k = |k| andω are connected by the formulae

α

c2
0 = λ− 2f τ

ω2τ 2+ (τ0 − 1)
(5)
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α

c2
(ω2− 02)+ 2f

(ωτ)2+ τ0(τ0 − 1)2

ω2τ 2+ (τ0 − 1)2
= b − λ0 (6)

where the constantb, which has the sense of an effective stiffness constant for the wave
with wavevectork, k = |k|, is introduced,

b ≡ b(k) = nβn + αk2. (7)

From (5) it follows that atf < 0 one has0 > 0, and any initial perturbation is
decaying. If the PUMA constantf > 0, then for excitations with frequencyω < ωc,
ωc = (1/τ)(2f τ/λ − 1)1/2, one has0 < 0, i.e. the homogeneous state withϕ = 0 is
unstable.

The estimation ofωc, with account being taken of the specific parameter values, gives
ωc 6 102 s−1. The autowave frequency is of the same order or smaller (see later). The term
with (α/c2)(ω2/β) ∼ ω2/ω2

af r is rather small (the antiferromagnetic resonance frequency
ωaf r for FeBO3 exceeds 1011 s−1) and the terms with the second time derivatives in (3) and
(4) may be omitted. The omission of the∂2ϕ/∂t2 term in (6) gives the simple formula for
the instability increment (−0) of the wave with wavevectork:

(−0) = f

λ
− 1

2τ
− b(k)

2λ
. (8)

This formula is too transparent from the physical viewpoint. The homogeneous state is
unstable at a rather large PUMA constantf > fc or at small anisotropyb < bc. Thus, on
the plane (b, f ), the instability region of the homogeneous ground state is on the right of
the curve

2f τ

λ
= 1+ bτ

λ
(9)

see figure 1. By decreasing the effective constantb (for example, by decreasing the external
magnetic fieldH or the β2 constant of the induced rhombic anisotropy) from the values
above the curve, the system may reach the instability region where the autowaves occur.

Let us write the simplest version of the equation which is adequate for the analysis of
the problem in spatially homogeneous oscillations. Omitting the terms with∂2ϕ/∂t2, and
∇2ϕ, using the dimensionless variableX = 2κ/f and parametersB = bτ/λ = nβnτ/λ and
F = 2f τ/λ, one can easily get

τ
dX

dt
+X = cos8 τ

dϕ

dt
= 1

2X
sin8 τ

dϕ

dt
= X

2
F sin8− 1

n
B sinnϕ. (10)

So the set of equations (3) in the homogeneous case can be represented in a form
equivalent to the dynamical system with 3/2 degrees of freedom. It is well known that such
equations are of rather non-trivial behaviour [11].

3. Small-amplitude autowaves

The set of equations for the variablesϕ,8, κ or ϕ, ψ , κ gives way to rather full investigation
for small-amplitude (weakly-nonlinear) autowaves when deviations of the variables from
their equilibrium value are small,ϕ � 1, ψ � 1 andf/2− κ � f/2. Let us consider
the properties of weakly-nonlinear autowaves for various types of anisotropy (the cases of
n = 6 andn = 1 were discussed in [8]).

Let us seek the solution in a simple autowave form when all variables depend on
a coordinate and time through the combinationωt − kr⊥; ω and k are the autowave
frequency and wavevector, respectively. To build a solution, the asymptotic procedure, see
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Figure 1. The region of stability and instability (above and below the curve 1, respectively) of
the homogeneous ground state. This figure also shows another bifurcation line: the line of the
limit cycle ‘opening’B = B0(F ), curve 2, and the line of the new (long) limit cycle creating
B = B1(F ), curve 3, see below section 6. Open cycles are the result of numerical calculation.

[13], was used. According to this procedure the solution has to be expanded by harmonics,
for example

8 = A cos(kr⊥ − ωt)+ A3 cos(3kr⊥ − 3ωt)+ A5+ · · · (11)

where A is the amplitude of the autowave,A � 1; the coefficientsA3, A5, . . . are
proportional to the next powers of the amplitude,An ∝ An.

After a simple but cumbersome algebra we can construct a solution exact to any order
in the autowave amplitude, which is the smallest parameter of the method. To first order in
amplitude the solution can be easily found by taking account of (11):

ψ = (1/ωτ) sin(ωt − kr⊥)
ϕ = (A/2)[1+ (1/ωτ)2]1/2 cos(ωt − kr⊥ − arctan(1/ωτ))

κ = f

2

{
1− A

2

4
− A

2

4

1

[1+ 4(ωτ)2]
cos(2ωτ − 2kr⊥)

}
. (12)

The relationship between the amplitudeA, frequency and wavevector is obtained from
the condition of the exclusion of the secular terms [13] up toA3 and can be written as
follows:

2f τ

λ
− 1− τb

λ
= A2

8

(
2f τ

λ
+ 1

)[
2+ 1

1+ 4(ωτ)2

]
+A

2

8

nβnτ

λ

[
1− n

2

4
− n2

4(ωτ)2
− 1

1+ 4(ωτ)2

]
(13)
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ω2 = b

λτ
+ A

2

4

(
2f τ

λ
+ 1

)
ω2

1+ 4(ωτ)2
+ A

2nβn

8λτ

{
1− n

2

4
− n2

4(ωτ)2
+ 1

1+ 4(ωτ)2

}
(14)

whereb = b(k), see equation (7), is the effective stiffness constant.
First, it is necessary to note that according to (8) the instability develops for the smallest

value of the effective constantb. For the considered model it corresponds tok = 0, i.e.
the homogeneous auto-oscillations are excited. However, in a real case of a magnetic plate
of finite thicknessL the magnetic dipolar interaction leads to the minimum ofb(k) at a
finite value ofk = k0 (it was shown in [14–16] in connection with the theory of domain
structures). In the weakly-nonlinear wave approximation it is also possible to consider more
general models. We dwell on the account of the magnetic dipolar interaction, which (from
our point of view) forms the period of the space unhomogeneities observed in [1–3].

The occurrence of the inhomogeneities is connected with the contribution of a rather
small componentm0z of the magnetic moment and therefore the account of this interaction
can be taken in the linear approximation only. The magnetic dipolar interaction leads to an
additional term in (1):

Fm = −(δ/δϕ)
∫
(MHm) dr.

HereHm is known as the demagnetizing field, which is determined by the magnetostatic
equations [17],

divHm + 4πdivM = 0 rotHm = 0 (15)

with account being taken of the usual boundary conditions of a continuity of the normal
components of the magnetic inductionB =Hm + 4πM and the tangential component of
the magnetic fieldHm [17]. The solution of equations (1) and (15) inside and outside of
the plate has been searched for as the combination of exponents such as

exp{iωt − ikr⊥ − iqz}.
Herer⊥ and the valuesq = ±qα, α = 1, 2, 3, are determined by the boundary conditions

for Bn and(Hm)t , as well as the condition for the magnetization(∂M/∂z)|z=±L/2, see the
details of the calculations in [15, 16].

It is possible to show that the orientation ofk parallel to the equilibrium direction of
the magnetization in the basal plane corresponds to the minimal value of the spin wave
frequency at a givenk = |k|. This means that such a wave will be responsible for the
loss of stability of the homogeneous ground state. This prediction is in agreement with
experiment [1–3]. It has been observed that an autowave withk parallel to the external
magnetic fieldH occurs. WhenH = 0 and the domain structure appears, three systems
of autowaves with different directions ofk are realized. These directions are parallel to
the magnetization of each domain [1]. For a sufficiently thick plate,L � √α/m0z (in
experiments [1–3] this inequality is fulfilled with a large stock), it can be shown that the
condition for continuity ofBn is most important and it is possible to take into account only
one (smallest) value ofq, see [15, 16]. The relation between this value ofq andk can be
expressed by a simple formulaq/k = tan(qL/2). For the frequencyω(k) it is easy to get
the expression

ω2 = ω2
0 + c2{(k2+ q2)+ 4πq2(m0⊥)2/α(k2+ q2)}

whereω0 is the frequency withk = 0 and without account being taken of the magnetic
dipolar interaction.
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Analysis shows that, near the minimum of the functionω = ω(k), q � k andqL ∼= π .
From here, it follows that the minimum of the frequency is observed atk = kc,

kc = (π3m2
0z/αL

2)1/4.

A specific calculation has shown that real magnitudes ofα, m0z and the plate thickness
L lead to a 1/k0 value equal to 100µm, which corresponds to the experimentally observed
autowave period [1–3].

In papers [8, 18] it was also noted that it is possible to distinguish the reasons
for the occurrence of the instability and the formations of the inhomogeneities, which
have dissipative and dynamic characters, respectively. However, the authors of [18]
offered another source for the occurrence of the inhomogeneities, namely, a magnetoelastic
interaction. From their approximate formula for the frequency of the magnetoelastic wave,
it follows that this minimum exists at some non-zero value. On the other hand, such a
minimum is not present in the exact theory of magnetoelastic waves, see formulae (3.13)
and (3.14) of the review article [19].

Let us discuss the weakly-nonlinear autowave properties. According to (13), the
amplitudeA becomes zero on a critical line (9), i.e. atf → fc or b→ bc, where

bc

f
= 1− λ

2f τ

the magnitudeω2 ≈ ω2
c being equal tonβn/λτ . According to the logic of the asymptotic

procedure, one can consider the amplitudeA and magnitudesω2−ω2
c andβ − βc to be the

smallest problem parameters. Then, in the terms proportional toA2 one could changeβ to
βc andω to ωc. As a result, equation (13) can be written as follows (hereBc = 2f τ/λ−1):

bc − b
bc
= A2

8

{
3− n

2

4
+ 4− n2/4

Bc
+
(

2

Bc
− 1

)
1

(1+ 4Bc)

}
→ A2

8

{
3− n2/4 Bc � 1

(6/Bc)(1− n2/24) Bc � 1
. (16)

From these equations it follows that for small values ofbc, i.e. for(2f τ/λ−1)� 2f τ/λ
and atn < 6, the sign ofbc− b is positive, and the amplitude is determined by the formula

A =
{

0 b > bc√
C(bc − b)/bc b < bc

(17)

whereC is a positive constant.
This form is standard for the so-called soft excitation of autowaves [11]. Ifbc � λ/τ ,

i.e. 2f τ/λ � 1 (this limiting case corresponds to the FeBO3:Ni parameter values in
experiments [1–3]), the coefficient on the right-hand side of (16) is positive only for
n2 < 12, i.e. for the magnetic field (n = 1) and for the rhombic anisotropy (n = 2)
cases. Soft excitation and a dependence like (17) are also realized in these cases. Ifn = 4
or 6, equation (16) has a solution only atb > bc, i.e. in the homogeneous state stability
region. This situation is characteristic of the so-called hard excitation whenbc < b < b⊥
and the homogeneous state is stable but there are two finite limit cycles describing the
autowave. One of these limit cycles determined by equation (16) is unstable and the other,
with an amplitude which never becomes zero, is a stable one. There is only one stable
cycle atb < bc. In general, the analysis of this problem may also be carried out through
the asymptotic procedure (forn = 6 this has been performed in [8]), but it requires very
cumbersome calculations (up to fifth order inA). A soft excitation was observed in the
experiment and we shall limit ourselves to this case.
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As we have already noted, the soft excitation is realized for rhombic anisotropy (n = 2).
For n = 4 and 6, this excitation takes place only in the presence of a rather large magnetic
field. For the autowave frequencyω it is easy to obtain formulae likeω2

c −ω2 ∝ ω2
cA

2, for
example, atBc � 1

ω2 = ω2
c{1− (3A2/8)(1− n2/24)} = ω2

c{1+ (b − bc)/bc}. (18)

Usually for the soft excitation case the autowave frequency decreases with increasing
amplitude. The analysis of weakly-nonlinear oscillations predicts a linear dependence
betweenω2 andA2 like ω2 = ω2

c (1 − A2/A2
0). This agrees with experiments [2, 3] at

small amplitudes.

4. Rotational dynamics of magnetization

A rather detailed analysis is possible in another limiting case whenf � β. An exact
solution of equations (10) can be found if one completely neglects the magnetic anisotropy.
There is no angleϕ in these equations and the dynamics ofκ and8 is determined by the
set of two equations

τ
dκ

dt
+ κ = (f/2) cos8 τ

d8

dt
= (4κτ/λ− f/2κ) sin8. (19)

Solving these equations, it is easy to find the time dependence of the anglesψ or ϕ
from the formulaeτ(dψ/dt) = (f/4k) sin8, ϕ = ψ +8/2.

The analysis of system (19) can be carried out through the phase plane method. It is
easy to see that, at 2f τ/λ 6 1, only one type of singular point

8 = πm k = (f/2)(−1)m m = 0,±1,±2

which are stable focuses, corresponding to a ground stateϕ = ψ + πm, ϕ = ψ = 0, is
present. If 2f τ/λ > 1, these singular points become saddle points and loose their stability,
but the stable focuses at

8 = πm±80 κ = κ0 = (f/2)(−1)m cos80 cos80 = (λ/2f τ)1/2 (20)

appear in the system. These states correspond to growth, which is linear with time, of the
anglesϕ andψ ,

dψ

dt
= dϕ

dt
= ω0 = (1/2τ) tan80 = 1

2τ

√
2f τ

λ
− 1. (21)

Thus atβ = 0 and 2f τ/λ > 1 the homogeneous synchronized precession of the
magnetization and the PUMA axis with frequencyω0 takes place in the magnet. The angle
between them has a constant value of80/2. Correction to this solution may be found at
small but finite values ofβn/f , for example

κ = κ0− β
2

√
2f τ

λ

n cosnωt + ωτ(n2− 8) sinnωt

n2+ (8− n2)ω2τ 2

ϕ = ωt + 2βτ/λ√
(2f τ/λ− 1)

2(4− n2)ωτ sinnωt + n[1+ (8− n2)ω2τ 2] cosnωt

n2+ (8− n2)ω2τ 2
(22)

wherek0 andω ≡ ω0 are defined by the formulae (20) and (21).
Thus, taking account of small but finite anisotropy causes additions toκ, ϕ and ψ

which are proportional tob and have harmonic time dependence likea cosωt + b sinωt .
Consequently, a stationary point8 = 80, κ = κ0 on the (8, κ) plane (see equation (20))
must transform into a limit cycle. Numerical integration of the equation of motion at small
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Figure 2. The phase trajectory projection of system (4) on the (8, ϕ) plane,n = 2, 2f τ/λ = 5,
b/f = 0.02.

b/f approves this result, see figure 2. This analysis also shows that this cycle is absolutely
stable. Phase trajectories quite quickly reached the limit cycle at different initial conditions
corresponding to the phase-space points lying both far from the cycle and inside it.

Note also that similar ‘open’ trajectories correspond to periodic motion of the
magnetizationm. In particular, the8 and κ dependence onmx = sinϕ or my = cosϕ
are described by closed curves (see figure 8 later) in all the regions in which the open
trajectories exist.

5. Large-amplitude oscillations. The picture of bifurcations

The analytical solution of equations (3) or (10) may be found at two limiting cases: whenb

is close tobc, i.e. b ≈ 2f −λ/τ and whenb � f . These cases have considerably different
solutions. They correspond either to a small-amplitude autowave or to a wave with rather
large amplitude with magnetization rotation in the basal plane. The investigation of the
intermediate region with parametersb0− b ∼ bc can be performed numerically only.

Numerical analysis of auto-oscillations described by the system (10) was made for two
of the most interesting physical models: the magnet with rhombic anisotropy (n = 2) and
the magnet in the presence of the magnetic fieldH oriented in a basal plane (n = 1). The
dimensionless parametersB = nβnτ/λ andF = 2f τ/λ are used.

Preliminary analysis consisted of the solution of the Cauchy problem for the set of two
equations for phase trajectoriesκ = κ(ϕ) and8 = 8(ϕ). Also the stationary solutions
at various initial conditions and parameters of the problem were investigated. For the
investigation of the real time dependence of the parametersκ, 8 and ϕ the set of three
equations (10) was solved and a special program for the limit-cycle search was used (see
later). The numerical integration was performed by the fourth-order Runge–Kutta method.

The analysis did not show qualitative differences of the results for the given models;
therefore we shall discuss them simultaneously. In all cases the functionsX = X(ϕ) or
8 = 8(ϕ) describing stationary motion were periodic atB < B0 and were determined
by close curves atB > B0. Thus, in the first stage we have found the first bifurcation:
the transition from periodic magnetization oscillations to rotational motion. This transition
may be called the ‘opening’ of the limit cycle. The values of the bifurcation parameters
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B0 = B0(B/F) are shown in figure 1. Further increase ofF (up to 103) leads to saturation
of this dependence.

At B0 < B < Bc we observed only closed trajectories in the planes (X, ϕ) and (8, ϕ)
corresponding to periodic oscillations (limit cycles). (A periodic system of cycles differing
by the shiftϕ → ϕ + πm, ψ → ψ + πl, wherel, m are integer, should be observed). At
rather largeB 6 Bc, i.e. in the case of weak nonlinearity of the oscillations, the curves
8(ϕ) or ψ(ϕ) were close to ellipses. The limit-cycle form changed considerably when
decreasingB from Bc to B0. The curves were more complicated at smaller values ofB.

At B 6 B0 the transition from closed to open trajectories (the ‘opening’ of the limit
cycles) was observed. In the (8,ϕ) plane this transition looks like limit-cycle breaking
along the line8 = 0. Open trajectories may be formed from up or down parts of the
cycles, see figure 3. AtB − B0 � B0 and initial conditions close to the limit cycle, the
point in the phase space (depicting point) can move for a long time along this cycle, and
the time of this transition sharply increases.

Figure 3. The projection of the phase trajectory on the (8,ϕ) plane atn = 1, F = 5,
B/F = 0.248. The beginning of the trajectory is close to a limit cycle existing atB/F = 0.25.
Then the depicting point goes to the trajectory corresponding to the oscillations of8 around
−π/2 and the infinite growth ofϕ.

Analysis of the real time dependence of the variables was made by using a special
program of limit-cycle investigation. The solution of the set of equations (10) determines
the motion of the point in a three-dimensional (X, ϕ,ψ) phase space. The limit cycle
corresponds to a closed trajectory. The initial pointX = X(0), ϕ = ϕ(0) was chosen in a
planeψ = 0. Then the set of equations was numerically integrated until the phase trajectory
crossed the planeψ = 0 the next time. This crossing, generally, took place at different
pointsX1 = G(X(0)), ϕ1 = 2(ϕ(0)), with the position depending on the initial values ofX
andϕ. Furthermore, the set of algebraic equations,

X = G(X) ϕ = 2(ϕ)
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describing the closing of the phase trajectory, was solved by using a standard numerical
Newton method program. This solution gave values of the initial states at which the phase
trajectory in spaceX, ϕ,ψ had the shape of a closed curve describing a limit cycle.

Note that both stable and unstable limit cycles can be found by means of this procedure.
That is why the limit-cycle stability investigation of equation (10), with initial conditions
close to the limit cycle, is an important topic for further analysis. The stability was defined
by a deviation growthδn,

δn = [(ϕn + 1− ϕn)2+ (Xn+1−Xn)2]1/2.

Hereϕn andXn are the values ofϕ andX at thenth crossing of the planeψ = 0. These
calculations were rather prolonged and were performed forn = 2 and some chosen values
of F = 2f τ/λ.

The analysis has shown that the closing of the trajectory (with a given relative precision
10−4) was realized only atB > B0 whereB0 = B0(F ) is a bifurcation value corresponding
to the above-described transition to rotational motion. The periodT of the limit cycle
increases with decreasingB (see figure 6 later), i.e.T increases (frequencyω = 2π/T is
decreasing) with increase of the amplitudeA. Note that this is typical for soft autowave
excitation. At smallA the frequency value is close to the one found in the small-amplitude
approximation,ω→ ωc = (b/λτ)1/2 andωcT → 2π .

We observed an interesting phenomenon when decreasingB for all values ofF . New
limit cycles with a period more than twice as large (the ‘long’ limit cycle, in contrast with
the ‘short’ one considered above), see figure 4, appear atB 6 B1. The corresponding
bifurcation valueB = B1(F ) is plotted above in figure 1.

Figure 4. The projections of ‘long’ and ‘short’ limit cycles on the (8, ϕ) plane forn = 2,
F = 5, b/f = 0.372 near the centre of the region of long-cycle appearance. The dotted line
shows the unstable limit cycle, see below.

One can easily see that this phenomenon is not the usual period doubling typical for
many nonlinear systems [11]. The phase trajectories of short and long limit cycles have
a very strong difference. No part of the trajectories coincide. The program searches for
one or another limit cycle depending on the initialϕ and κ values used. WhenB values
are rather close toB1 both cycles are stable. That is, a depicting point (initial deviation
δ 6 10−6) preserved the deviation ofδ 6 10−5 during more then 1000 cycles (5×105 steps
by the Runge–Kutta scheme). At this stage we did not succeed in finding other limit cycles
(in particular, unstable) atB 6 B1.
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Figure 5. The phase trajectories atF = 5, B/F = 0.324. (a) Limit circles (the stable cycle in
the middle, and two unstable cycles); (b) the trajectory leaving from the right limit cycle to the
long limit cycle with central point nearϕ = π/2.

An occurrence of a new single limit cycle is a quite extraordinary phenomenon for the
dynamic system. The systems with limit cycles with one degree of freedom occur in pairs
only. One of the cycles in the pair is stable and the other is unstable. For systems with
more than one degree of freedom the occurrence of the single cycle is not restricted but as
far as we know it has not been observed earlier.

We have performed more detailed investigations atF = 5 to clarify limit-cycle
bifurcations. We have also found unstable limit cycles. Note that this was not an easy
task as their instability increment is quite small for only a narrow interval ofB values
(δn increased by a factor of 10 forn = 30, 12 and 5 atB/F = 0.324, 0.328 and 0.332,
respectively). At greaterB values the increment is rather large and unstable limit cycles
manifest themselves only for transition processes.
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Let us describe bifurcations of the periodic solutions of equations (4) atB0 < B < B1.
In order to do this one must take into account the periodic set of both long and short limit
cycles. They differ from one another by a shift inϕ andψ at πn.

Consider a stable short limit cycle with central point atϕ = 0, ϕ = 0. We have found
two well defined unstable limit cycles close to this stable one at 0.324 6 B/F 6 0.33,
see figure 5(a). The system reaches the short stable cycle when the initial value lies inside
a small region occupied by them. The phase trajectory behaviour is quite different if the
initial point is out of this small region. Phase trajectories beginning on the ‘right’ and on the
‘left’ from ‘right’ and ‘left’ unstable cycles tend to two different but equivalent long cycles,
with centres atϕ = π/2, ψ = 0, see figure 5(b), andϕ = −π/2, ϕ = 0, respectively.

Unstable limit cycles move away from short stable cycles withB/F growth, see
figure 4, and their periods and increments sharply increase. This fact made their search
too complicated. However, one can observe that atB → B1 these unstable cycles are close
to two long stable ones. This fact can be easily seen from figure 6 which demonstrates the
dependence of the limit-cycle period onB.

Figure 6. The dependences of the periodsT of the limit cycles (in units of 1/ωc, ωc is the
frequency of the small-amplitude oscillations) onB/F = β2/f for n = 2, 2f τ/λ = 5. Full
lines represent the dependences for stable cycles, diamonds represent those for unstable ones.

Thus the bifurcation atB1 can be described as the occurrence of the set of pairs of
new limit cycles: a stable long cycle and a unstable one with a great instability increment.
Unstable cycles linked with neighbouring long cycles (for example, centred atϕ = π/2,
ψ = 0 andϕ = −π/2, ψ = 0) move quickly to a stable short cycle (centred atϕ = π/2,
ψ = 0) asB decreases to the valueB/F = 0.324 atF = 5. Then two unstable cycles
coincide with a short stable one; we could not separate them at a given accuracy of 10−4.
Moreover, even if a stable short cycle exists, the initial-condition region leading to it is
quite narrow. This three-cycle junction manifests itself as an unstable short cycle, with a
very small instability increment. Thus there is only one stable limit cycle (the long one) at
B0 < B < B2, B2/F = 0.324 atF = 5. However, short cycles can also be observed at
B < B2 at a time of less than 100 periods.

One can also point to an initial-condition region leading to ‘open’ trajectories for the
same values of the parameters. The transition from a limit cycle to open trajectories
describing periodic magnetization motion with a full reverse in a basic plane begins at
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Figure 7. The transition to the magnetization precessional motion at 2f τ/λ = 5, B = 0.98B0.

Figure 8. Phase trajectories on the (cosϕ,8) plane at 2f τ/λ = 5, B = B0. The full line
describes the rotational motion, the dotted line the long limit cycle.

B < B2. At B < B0 only open trajectories exist. This transition may be described as long-
limit-cycle destabilization. Besides the transition process atB 6 B0, the depicting point can
perform some revolutions around unstable cycles, both long and short, see figure 7. Note
that the ‘open’ phase trajectories are closed for physical variables8 andκ, andmx = sinϕ
ormy = cosϕ, see figure 8. Thus auto-oscillation of the magnetization vectorm is periodic
in the whole region 0< B < Bc.

6. Conclusion

The theory developed in this paper allows us to explain the magnetization auto-oscillation
and autowaves observed in [1–3]. They are a consequence of an anomalous photo-induced
anisotropy in FeBO3 with nickel or some other impurities under the action of radiation. Not
all the experimental details can be described quantitatively by our theory. However, there is
a most important phenomenon in this theory, which is adequate to describe the experimental
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evidence: the appearance of auto-oscillations with a frequency of the order of 10–100 Hz,
which is significantly less than the frequency of the linear antiferromagnetic resonance. The
auto-oscillation frequency values which were calculated according to PUMA parameters
defined from independent experiments have been in good agreement with experimental
data. However, the analysis we have carried out has shown that with amplitude growth the
auto-oscillation character becomes more complicated than observed in [1–3].

The experiments [1–3] were performed using one type of sample only, namely, thin films
with the presence of growth-induced in-plane rhombic anisotropy. The magnetic dipolar
interaction also plays a significant role in these samples, forming a domain structure at small
fields. Only space inhomogeneous auto-oscillations of quite small amplitude (1ϕ < 10◦)
were observed in these samples. To our mind, it is of great interest to investigate the
photo-induced auto-oscillations in FeBO3:Ni-like materials in conditions where the strongly
nonlinear auto-oscillations take place. In this situation bifurcation like ‘short cycle’–‘long
cycle’–‘open trajectories’, describing a transition from oscillation around the valueϕ = 0
to that around the valueϕ = π/2 and then to magnetization rotation, should be seen. Our
calculation showed that this set of bifurcations took place at a reasonable value of the ratio
of the anisotropy and the PUMA constants, namely at 0.6 < β2/f < 1.03, which can be
realized for FeBO3:Ni. The moderation of the role of the magnetic dipole interaction, which
takes place for small enough spherical samples, is probably also important.

The magnetization auto-oscillation with unique properties (large amplitude, low
frequencies and the presence of multistability) can be realized if such conditions are fulfilled.
Note that great attention has been paid to chaotic auto-oscillation and controlled chaos
phenomena, see, for example, [20–22]. We did not observe the chaotic behaviour of auto-
oscillations in the frame of system (4). Nevertheless, it is quite probable that the appearance
of chaotic auto-oscillation in the multistability region (B0 < B < B1) may occur with the
presence of small enough pumping. The suppression of such chaotic auto-oscillation during
the changing of the parameter values is also possible. From the point of the general physics
of nonlinear oscillations in a non-integrable system, it may be of great interest to analyse
these photo-induced auto-oscillations. Because of the low values of the frequencies and
the large amplitudes they can be experimentally investigated (for example, using magneto-
optical methods) in a real time regime.
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